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Received 25 July 1973 

Abstract. A practical method is given for finding ClebschGordan coefficients for space 
groups. It is immediately applicable since the formulae derived depend only on a knowledge 
of the vector and projective representations of point groups which are fully tabulated 
elsewhere. 

1. Introduction 

An important application of group theory to physics is the problem of decomposing a 
Kronecker product of irreducible representations as a direct sum of irreducible parts. 
In solid state physics, the symmetry groups under consideration are space groups and a 
particular application would be to the theory of selection rules in crystals. This paper 
deals with the problem of constructing basis functions for the representations which are 
contained in the Kronecker product of two irreducible space group representations. 
This problem has also been considered by Litvin and Zak (1968), who propose a method 
which is basically an application of a result of Koster (1958) to the full group. We use 
the fact that every irreducible space group representation may be expressed as an 
induced representation and apply a theorem of Mackey (1952) to give a direct sumdecom- 
position of the Kronecker product indexed by a fixed set of double coset representatives. 
Each direct summand is associated with a unique k vector in the first Brillouin zone 
and so we may decompose the induced representation of G by inducing through the 
little group Ck and reducing at this stage. Thus the method we propose for finding the 
Clebsch-Gordan coefficients splits naturally into three steps. We end by giving a 
simple example to show that this method is a practical proposition for reducing the 
Kronecker product of space group representations. 

2. Clebsch-Gordan coefficients 

Let G be a space group and let {ri  : i = 1,. . . , n} be a complete set of non-equivalent 
UIR (unitary irreducible representations) of G. The Kronecker product of two representa- 
tions is equivalent to a direct sum decomposition, thus 

ri 0 rj @ Cijkrk 
k 

where the coefficients C i j k  are non-negative integers. Hence there exists a unitary matrix 
t Present address : Cavendish Laboratory, Cambridge, UK 
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U such that 

The matrix elements of U are called the Clebsch-Gordan coefficients. The matrix U 
may not be unique because in general we can find a unitary matrix V such that 

Dividing I/ into blocks suitable for block matrix multiplication and applying Schur's 
lemma, we find 

(2.4) 
k 

where d k  = dim rk and V k  is an arbitrary c i jk  x C i j k  unitary matrix. Clearly if all the C i j k  

are either zero or one the new basis functions will be determined up to a phase factor. 
Otherwise the functions will only be given up to arbitrary linear combinations of the 
ordered sets of basis functions belonging to a given UIR. 

In their book, Bradley and Cracknell (1972) have described how every UIR I" of a 
space group G is characterized by a vector k in the representation domain of the first 
Brillouin zone and the label, p ,  of a small representation of the little group Gk. Indeed 
every representation of G can be expressed in the form (D! t C). In what follows we shall 
assume that this standard form is known. In other words, the matrix form of the small 
representations DE and the coset representatives of Gk in G are fixed. We also need a 
result of Mackey (1952) which states that if C and D are representations of the subgroups 
H a n d  K of G respectively, then 

where the direct sum is taken over all the double coset representatives defined by 

G = HdJC 
a 

The group L,  = H n dJd; ', and D, is a representation of dJd; defined by 

Da(dakdz- ') = D(k)  (2.7) 
for all k E K. 

This theorem has immediate application to our problem if H and K are the little 
groups corresponding to the representations C and D. For convenience we use general 
notation but it should not be forgotten that G is a space group. 

We have already assumed the existence of standard sets of left coset representatives, 
so take 

(2.8) G = VPP = UP& 
7 U 

However, the double coset representatives need not be fixed beforehand and the resulting 
Clebsch-Gordan coefficients will depend on the particular set chosen. Suppose we take 

C = Hd"K. 
2 

(2.9) 
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From equations (2.8) and (2.9), each pr = h:d,kT where h: E H,  kT E K. It can be shown that 

H = h:L, 
T 

(2.10) 

is a decomposition of H into distinct left cosets. 
Let the UIR D have basis set { $ i : i  = 1, .  . . , d }  and the UIR C have basis set 

{ i j j : j  = l , . .  .,f},thenabasisfortheKroneckerproduct(DfG) @~(CfG)is((p,$~,p,$~):  
for all i, j ,  z, o}. We are using the definition of an induced representation given by 
Bradley (1966). A carrier space for the representation [(D, 1 L,) 0 (C 1 L,)] t G in the 
direct sum decomposition (2.5) is 

(2.11) 

where the summation sign on the right-hand side means the set of all linear combinations 
of the functions puh:(d ,4 i ,  i j j ) .  The next lemma shows that $2, is independent of the 
particular choice of double coset representative. 

Lemma (2.1). If Hd,K = Hd,K then R, = 0,. 

Proofi Let d, = hd,k, where h E H, k E K, then it can be shown that L ,  = hL,h-'.Now 

H = h:L, = h:h-'L, 
r T 

hence 

= C p u h ; h - ' ( d , 4 i ,  $ j )  = C ~ u h X d z k 4 i , h - ' $ j ) .  

But the space generated by the basis set { $i} is invariant under the action of k E K and 
the space generated by the basis set { $ i )  is invariant under the action of h -  E H. Hence 

Before proceeding, we must consider the representations more closely. If D; is a 
UIR of K = Ck which subduces a multiple of the representation exp( - ik . t )  on T, then 
it can be written 

R, = a,. 

D;({Rlu})  = exp( - ik .  U) A;({RIu}) (2.12) 

where Ak is a projective representation of the point group isomorphic to the little CO- 

group d. Let d, = { S l w } ,  then for all {Rlv} E L, it can be shown that 

(Di;;,O D;:)({Rlu}) = exp[- iW, + A 2 ) .  ulA;;;,(R) 0 $:(I?) (2.13) 

where 

Di;,({ Rju}) = exp( - iSk . u)A;;,(R) (2.14) 

and 

Ai,,(R) = exp[-iSk. ( R w - w ) ]  A;(S-'RS).  (2.15) 

Let k = Sk, + k , ,  then since {Rlu}  E L, we have Rk - k and it follows that L,  c Gk. 
Thus the block labelled by LY is associated with the wavevector k which may or may not 
lie in the representation domain. In the latter case there exists an element P in the point 
group such that Pk lies in the representation domain. The representation induced from 
GPk is identical with the representation induced from Gk ifwe conjugate both the standard 
representations of GPk and the standard coset representatives of GPk in G with the same 
element {PIU} E G, where U is either the vector or a non-primitive translation. 
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The method we employ is to induce up to G through Gk and reduce the representation 
at the Gk stage. This means that the coset representatives of L,  in G must be chosen more 
carefully. We take 

(2.16) 

where {q:} is the required subset of {pub:} and take a standard set, as described above, 
for Gk in G. From the theory of induced representations, a change of coset representatives 
leads to a unitarily equivalent representation. 

The first step is to calculate the unitary matrix U ,  which achieves the partial reduc- 
tion, namely 

( U , ) -  ' [ ( D  t c) 0 (C t QIUl = 0 w, 1 L,) 0 (C  1 LA1 t Gk) t G. 
Since 

(2.17) 
U 

~mq:(d,4i ,  $ j )  = ( ~ r 4 r  > p u $ m P ( p L  'pcoq:dJliC(pi ' p m q t ) m j  (2.18) 

where p ;  'pmq;d, E K ,  p i  ' p O &  E Hand { p m }  is the standard set ofleft coset representatives 
for Gk in G, we have 

(2.19) 

Now we may restrict attention to the projective representations (Ai:;, 0 Ai;) given 
by equation (2.13). In general this will be reducible, so there exists a unitary matrix U ,  
such that 

i ,m 

U,(?olm, uwvij) = D(P; 'Pmq;dn),iC(Pi ' P w q : ) m j .  

(2.20) 

then 

U ,  = U,(uwvij, uwvyi,) (2.21) 

where r = 1,. . . , ay and i, denotes the ith basis vector of the rth representation Wt.  To 
obtain the required decomposition, it remains for us to reduce each (Wt  t Gk). Let U 3  
be the unitary matrix such that 

(2.22) ( U 3 ) - ' ( W :  t Gk)U3 = @ b,At 
then 

U ,  = U,(awvyi,, uwv'yqj,) (2.23) 

where s = 1,. . . , b, and j, denotes the jth basis vector of the sth representation Ai.  
Since the coset representatives { p m }  were chosen to be in standard form, the required 
matrix is 

U = U1 @ U,(uwv) @ U,(awy) . (2.24) 

In general, the group L, will be small and U , ,  U ,  may be found easily from a know- 
ledge of the representations. The vector representations of the three-dimensional point 
groups are tabulated by Bradley and Cracknell (1972), the projective representations 
are tabulated by Hurley (1966) and a formula for inducing projective representations is 

(u ,O .v  1 1 
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given by Backhouse and Bradley (1970). However, in all cases the method of Koster 
(1958) may be used to reduce the representations. Since this method only depends on the 
orthogonality relations it may be extended without change to projective representations. 

It is interesting to compare our method with that of Litvin and Zak (1968). Their use 
of Koster's method at  the full group level leads to a long analysis of the properties of the 
matrix U in order to simplify the calculations. Using our procedure, the symmetries of 
the matrix are much more apparent. 

3. Example 

Using the notation and results of Bradley and Davies (1970), we apply our method to a 
pair of irreducible representations of the space group Tj corresponding to the zinc- 
blende structure. Consider the Kronecker product 

(3.1) (Xl t c) 0 (L3 t c) = ( L ,  t c) 0 (L2 T c) 0 2(L3 t c). 

The little co-groups of X ,  L are D,,, C3v,  respectively, and since C 3 p , ,  = T,, there is 
only one double coset representative which we take to be {EIO}. Hence 

(XI t c) 0 (L3 7 c) 

k = (3,0,+)+(,,,,,) = (1,;,1) - SLXk,. 

1 { E ,  o d e } )  0 ("3 1 { E ,  t (3.2) 

with associated k vector 

(3.3) 1 1 1  

The matrix U ,  is 24x24 and can be calculated from equation (2.19) if we take the 
standard representations to be those given by table 2.3 of Bradley and Cracknell(l972). 
We shall concentrate on obtaining U 2  and U 3 .  

Take the following as standard left coset decompositions : 

Td = ED,, U C:,D2, U C,D2, 

Td = EC3v c2xc3v s l x c 3 v  s&c3v 

c 3 v  = E ( E , o d e } u  C : l { E , o d e } u  C , l { E , o d e }  

Also 

Sk = S,CLS,:, = s,c3vs,:, 
= ( E ,  cy43 c;43 o d e ,  Oda?  o d d } .  

This group has a two-dimensional representation Dk corresponding to the representation 
L3 of C3v given by 

Returning to equation(3.2), let A be the representation(X, 1 ( E ,  o d e } )  0 (L3 1 ( E ,  ode}), 
then 
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It can be shown that 

(3.6) 

reduces A to A,  0 A, ,  the identity and alternating representations of { E ,  gde} .  

That is E ,  Cy4, Ci4 . We obtain the following representations : 
Now induce up to ck taking as coset representatives E,S&C:,S&, S&C;lS2x. 

f l  0 

[ A  7 Gkl(od,) = [ - O  0 k! 

[ A t C k ] ( C i 4 )  =I: 0 k1 
(3.7) 

where we take the k signs corresponding to A = A,, A,respectively. Since ( A ,  0 A,) 7 ck 
gives the regular representation of ck, it is easy to find matrices which decompose 
the above representations. It can be shown that 

J3 Jf 0 

%=Id: JL -JL -Jf - JL d : ]  

(3.8) 

We now have enough information to find the Clebsch-Gordan coefficients. 
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